オンラインカジノコンビニ入金

<ウェブサイト名>

<現在の時刻>

出典: 標準

International Affairs Students Current Students Alumni Faculty/Staff Careers--> TOHOKU UNIVERSITYCREATING GLOBAL EXCELLENCE Search 日本語 Contact Tohoku University --> About Facts & Figures Facilities Organization Chart History President's Message Top Global University Project Designated National University Global Network Promotional Videos Academics Undergraduate Graduate Courses in English Exchange Programs Summer Programs Double Degree Programs Academic Calendar Syllabus Admissions Undergraduate Admissions Graduate Admissions Fees and Expenses Financial Aid Research Feature Highlights Research Releases University Research News Research Institutes Visitor Research Center Research Profiles Academic Research Staff Campus Life International Support Office IT Services Facilities Dining & Shops Campus Bus Clubs & Circles News University News Research--> Arts & Culture Health & Sports Campus & Community Press Release--> International Visit Alumni Careers Events Exhibits Music Special Event Lecture Alumni--> Map & Directions Campus Maps & Bus--> Facilities Map--> TOHOKUUNIVERSITY About Academics Admissions Research Campus Life News Events International Affairs Students Current Students Alumni Faculty/Staff Promotional Videos Subscribe to our Newsletter Map & Directions Contact Jobs & Vacancies Emergency Information Site Map 日本語 Close Home Research News New Strategy Improves Perovskites' Oxygen Reduction Performance in Hydrogen Fuel Cells Research News New Strategy Improves Perovskites' Oxygen Reduction Performance in Hydrogen Fuel Cells 2023-12-15 A research group has reported on a new method to enhance the electrochemical surface area (ECSA) in a calcium-doped perovskite, La0.6Ca0.4MnO3 (LCMO64), thereby overcoming a common bottleneck in the application of perovskite oxides as electrocatalysts in hydrogen fuel cells. Details of the findings were reported in the journal Advanced Materials on November 29, 2023. Perovskite oxides exhibit interesting and diverse properties, making them valuable in various technological applications. Their high intrinsic activities also position them as a promising alternative to noble metal catalysts for efficiently catalyzing the oxygen reduction reaction (ORR). However, their application is still hampered by their poor electrical conductivity and low specific surface area. "Our electrochemically induced calcium-leaching process greatly increased ECSA in LCMO64," points out Hao Li, Associate Professor at Tohoku University's Advanced Institute for Materials Research (WPI-AIMR) and corresponding author of the paper. "The activated, calcium-deficient LCMO64 demonstrated an ECSA approximately 33.84% higher than that of unactivated materials, showcasing superior electrocatalytic ORR performance - surpassing the benchmark commercial Pt/C catalyst in an alkaline solution." Evidence of calcium leaching during ORR, leading to the high surface area of the LCMO64. ©Hao Li et al. To test the benchmarks of the material, Li and his colleagues conducted theoretical analysis along with electrochemical surface state probing and pH-dependent microkinetic modeling. The results suggested that this catalyst reaches the Sabatier optimum of alkaline ORR. The electrochemical performance.©Hao Li et al. This research marks the first time a strategy involving calcium (Ca) doping has been employed to overcome challenges associated with low conductivity and surface area in perovskite oxides. The unique phenomenon of Ca leaching observed under ORR conditions results in a higher surface roughness, significantly expanding the available surface area for ORR and thereby boosting the catalyst's performance. "Finding low-cost and effective electrocatalysts for the ORR in hydrogen fuel cells has been a significant challenge," adds Li. "Our work not only addresses this challenge but also offers a novel strategy for enhancing the electrocatalytic performance of perovskite oxides. This breakthrough has far-reaching implications for the widespread adoption of hydrogen fuel cell technology." State-off-the-art theoretical analyses of ORR activities on the materials.©Hao Li et al. Publication Details: Title: Cation-Deficient Perovskites Greatly Enhance the Electrocatalytic Activity for Oxygen Reduction ReactionAuthors: Qun Li, Di Zhang, Jiabin Wu, Simin Dai, Heng Liu, Min Lu, Renwen Cui, Wenxi Liang, Dingsheng Wang, Pinxian Xi, Meilin Liu, Hao Li, Liang HuangJournal: Advanced MaterialsDOI: 10.1002/adma.202309266z Contact: Hao Li, Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Email: li.hao.b8tohoku.ac.jpWebsite: https://www.li-lab-cat-design.com/ --> Archives 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 Page Top About Tohoku University Academics Admissions Research Campus Life News Events International Affairs Students Alumni Promotional Videos Subscribe to our Newsletter Map & Directions Contact Tohoku University Jobs & Vacancies Emergency Information Site Map Privacy Policy Media Enquiries Parent & Family Support Public Facilities Contact Tohoku University

サウサンプトンfc順位 ベッドカバーアメリカン チャンピオンズカップ払い戻し 「Betway スポーツ」をApp Storeで
Copyright ©オンラインカジノコンビニ入金 The Paper All rights reserved.